f04 — Simultaneous Linear Equations f04bhc

NAG C Library Function Document

nag real sym lin_solve (f04bhc)

1 Purpose

nag real sym lin_solve (f04bhc) computes the solution to a real system of linear equations AX = B,
where A is an n by n symmetric matrix and X and B are n by » matrices. An estimate of the condition
number of 4 and an error bound for the computed solution are also returned.

2 Specification

#include <nag.h>
#include <nagf04.h>

void nag_real_sym_lin_solve (Nag_OrderType order, Nag_UploType uplo, Integer n,
Integer nrhs, double a[], Integer pda, Integer ipiv[], double b[],
Integer pdb, double *rcond, double *errbnd, NagError xfail)

3 Description

The diagonal pivoting method is used to factor 4 as 4 = UDU", if uplo = Nag_Upper, or 4 = LDL", if
uplo = Nag_Lower, where U (or L) is a product of permutation and unit upper (lower) triangular
matrices, and D is symmetric and block diagonal with 1 by 1 and 2 by 2 diagonal blocks. The factored
form of A4 is then used to solve the system of equations AX = B.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Higham N J (2002) Accuracy and Stability of Numerical Algorithms (2nd Edition) SIAM, Philadelphia

5 Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag ColMajor.

2: uplo — Nag_UploType Input
On entry: if uplo = Nag_Upper, the upper triangle of the matrix 4 is stored.
If uplo = Nag_Lower, the lower triangle of the matrix 4 is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: the number of linear equations 7, i.e., the order of the matrix A.

Constraint: n > 0.

[NP3660/8] f04bhe.1

f04bhc NAG C Library Manual

4: nrhs — Integer Input
On entry: the number of right-hand sides r, i.e., the number of columns of the matrix B.

Constraint: nrhs > 0.

5: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda X n).
If order = Nag_ColMajor, the (i,j)th element of the matrix 4 is stored in a[(j — 1) x pda +i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix 4 is stored in a[(i — 1) x pda+j — 1].
On entry: the n by n symmetric matrix 4.

If uplo = Nag Upper, the leading n by n upper triangular part of the array a contains the upper
triangular part of the matrix 4, and the strictly lower triangular part of a is not referenced.

If uplo = Nag_Lower, the leading n by n lower triangular part of the array a contains the lower
triangular part of the matrix 4, and the strictly upper triangular part of a is not referenced.

On exit. if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, the block diagonal
matrix D and the multipliers used to obtain the factor U or L from the factorization 4 = UDU" or
A =LDL" as computed by nag_dsytrf (f07mdc).

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda > max(1,n).

7: ipiv[dim| — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1,n).

On exit: if fail.code = NE_NOERROR, NE SINGULAR or NE RCOND, details of the
interchanges and the block structure of D, as determined by nag dsytrf (f07mdc).

ipivik — 1] >0
Rows and columns & and ipiv[k — 1] were interchanged, and dy; is a 1 by 1 diagonal block.
uplo = Nag_Upper and ipiv[k — 1] = ipiv[k — 2] < 0

Rows and columns k — 1 and —ipiv[k — 1] were interchanged and d_; 14 is a 2 by 2
diagonal block.

uplo = Nag_Lower and ipiv[k — 1] = ipiv[k] < 0
Rows and columns k + 1 and —ipiv[k — 1] were interchanged and 41 is @ 2 by 2
diagonal block.
8: b[dim] — double Input/Output
Note: the dimension, dim, of the array b must be at least

max(1, pdb x nrhs) when order = Nag_ColMajor;
max(1,pdb x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,j)th element of the matrix B is stored in b[(j — 1) x pdb + i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix B is stored in b[(i — 1) x pdb +j — 1].
On entry: the n by r matrix of right-hand sides B.

On exit: if fail.code = NE_NOERROR or NE_RCOND, the n by r solution matrix X.

f04bhe.2 [NP3660/8]

f04 — Simultaneous Linear Equations f04bhc

11:

12:

6

pdb — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:

if order = Nag_ColMajor, pdb > max(1,n);

if order = Nag_RowMajor, pdb > max(1, nrhs).
rcond — double * Output
On exit: if fail.code = NE_NOERROR, NE_SINGULAR or NE_RCOND, an estimate of the

reciprocal of the condition number of the matrix 4, computed as rcond = 1/ <||A||1 Hz‘f1 ||1)

errbnd — double * Output

On exit: if fail.code = NE_NOERROR or NE_RCOND, an estimate of the forward error bound
for a computed solution X, such that ||x — x||,/||x||, < errbnd, where % is a column of the computed
solution returned in the array b and x is the corresponding column of the exact solution X. If rcond
is less than machine precision, then errbnd is returned as unity.

fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

NE_INT 2

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).

On entry,pdb = (value), n = (value).Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

[NP3660/8] f04bhe.3

f04bhc NAG C Library Manual

NE_RCOND

A solution has been computed, but rcond is less than machine precision so that the matrix 4 is
numerically singular.

NE_SINGULAR

Diagonal block (value) of the block diagonal matrix is zero. The factorization has been completed,
but the solution could not be computed.

7 Accuracy

The computed solution for a single right-hand side, X, satisfies an equation of the form

(A+E)x=0b,
where
IE][, = O(e) |4l
and ¢ is the machine precision. An approximate error bound for the computed solution is given by
I =l _ o DEL
€[l 1414
where k(4) = ”Af1 I I[4]];, the condition number of 4 with respect to the solution of the linear equations.

nag_real_sym_lin_solve (f04bhc) uses the approximation |E|,; = €||4||, to estimate errbnd. See
Section 4.4 of Anderson et al. (1999) for further details.

8 Further Comments

The total number of floating-point operations required to solve the equations AX = B is proportional to
(%n3 + 2n2r). The condition number estimation typically requires between four and five solves and never
more than eleven solves, following the factorization.

In practice the condition number estimator is very reliable, but it can underestimate the true condition
number; see Section 15.3 of Higham (2002) for further details.

The complex analogues of nag_real sym lin_solve (f04bhc) are nag_herm_lin_solve (f04chc) for complex
Hermitian matrices, and nag_complex sym lin solve (f04dhc) for complex symmetric matrices.

9 Example
To solve the equations
AX =B,
where A is the symmetric indefinite matrix
—1.81 2.06 063 -1.15 096 3.93
4= 2.06 1.15 1.87 420 i B— 6.07 19.25
~| o063 187 —021 387 * 1838 9.9
—1.15 4.20 3.87 2.07 9.50 27.85

An estimate of the condition number of 4 and an approximate error bound for the computed solutions are
also printed.

f04bhc.4 [NP3660/8]

f04 — Simultaneous Linear Equations f04bhc

9.1 Program Text

/* nag_real_sym_lin_solve (f04bhc) Example Program.
*
* Copyright 2004 Numerical Algorithms Group.
*
* Mark 8, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf04.h>
#include <nagx04.h>

int main(void)

{

/* Scalars */
double errbnd, rcond;
Integer exit_status, i, 3Jj, n, nrhs, pda, pdb;

/* Arrays */

char uplo[2];
double *a=0, *b=0;
Integer *ipiv=0;

/* Nag Types */
NagError fail;
Nag_OrderType order;
Nag_UploType uplo_enum;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) al(J-1)+*pda
#define B(I,J) bl (J-1)=*pdb
order = Nag_ColMajor;
#else
#define A(I,J) al(I-1)=*pda
#define B(I,J) bl (I-1)=*pdb
order = Nag_RowMajor;
#endif

+ +
H H
[
2R

+ +
(I a
[
2EE

exit_status = 0;
INIT FAIL(fail);

Vprintf ("nag_real_sym_lin solve (£04bhc) Example Program Results\n\n");

/* Skip heading in data file #*/
Vscanf ("s*[*\n] ");

Vscanf ("$1d%1d%*["\n] ", &n, &nrhs);
if (n>0 && nrhs>0)
{
/* Allocate memory */
if (!(a = NAG_ALLOC(n#*n, double)) ||
! (b = NAG_ALLOC(n*nrhs, double)) ||
! (ipiv = NAG_ALLOC(n, Integer)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

b
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdb = n;
#else
pda = n;
pdb = nrhs;
#endif
3
else

[NP3660/8] f04bhc.5

f04bhc NAG C Library Manual

{
Vprintf ("ss\n", "n and/or nrhs too small");
exit_status = 1;
return exit_status;

3

Vscanf (" ' %l1s ’'%*[*\n] ", uplo);
if (*(unsigned char *)uplo == 'L’)
uplo_enum = Nag_Lower;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}

if (uplo_enum == Nag_Upper)
{
/* Read the upper triangular part of A from data file */
for (i=1; i<=n; ++1i)

{
for (j=i; j<=n; ++3)
{
Vscanf ("s1f", &A(i,3));
}
¥
Vscanf ("sx[*\n] ");
}
else
{

/* Read the lower triangular part of A from data file */
for (i=1; i<=n; ++1i)

{
for (j=1; j<=i; ++3j)
{
Vscanf ("$1f", &A(i,3));
3
b
Vscanf ("sx["\n] ");

}

/* Read B from data file x/
for (i=1; i<=n; ++1i)

{
for (j=1; j<=nrhs; ++j)
{
Vscanf ("s1f", &B(i,j));
b
}
Vscanf ("$*[*\n] ");

/* Solve the equations AX = B for X */
/* nag_real_sym_lin_solve (f04bhc).
* Computes the solution and error-bound to a real symmetric
* system of linear equations
*
/
nag_real_sym _lin_solve(order, uplo_enum, n, nrhs, a, pda, ipiv, b, pdb,
&rcond, &errbnd, &fail);
if (fail.code == NE_NOERROR)
{

/* Print solution, estimate of condition number and approximate =*/
/* error bound */

/* nag_gen_real_mat_print (xO4cac).
* Print real general matrix (easy-to-use)
*/

nag_gen_real mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,

f04bhc.6 [NP3660/8]

f04 — Simultaneous Linear Equations f04bhc

nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real_mat_print (x04cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;
¥
Vprintf ("\n%s\n%6s%9.le\n", "Estimate of condition number", "", 1./rcond);

Vprintf ("\n\n");
Vprintf ("%$s\n%6s%9.le\n\n",

"Estimate of error bound for computed solutions", "", errbnd);
}
else if (fail.code == NE_RCOND)
{

/* Matrix A is numerically singular. Print estimate of */
/* reciprocal of condition number and solution =*/

Vprintf ("\n") ;
Vprintf ("%$s\n%6s%9.le\n\n\n",
"Estimate of reciprocal of condition number",
/* nag_gen_real _mat_print (x04cac), see above. */
nag_gen_real _mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, b, pdb, "Solution", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real mat_print (x04cac).\n%s\n",
fail.message);

"" rcond);

exit_status = 1;
goto END;
}
¥
else if (fail.code == NE_SINGULAR)
{
/* The upper triangular matrix U is exactly singular. Print */

/* details of factorization */

Vprintf ("\n") ;
/* nag_gen_real _mat_print (xO4cac), see above. */
nag_gen_real_mat_print(order, Nag UpperMatrix, Nag_NonUnitDiag, n, n, a,
pda, "Details of factorization", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real_mat_print (xO4cac).\n%s\n",
fail.message);

exit_status = 1;
goto END;
}
/* Print pivot indices */
Vprintf ("\n%s\n", "Pivot indices");
for (i=1; i<=n; ++1)
{
Vprintf ("%111d%s", ipiv[i-1], i%7 == 0 || 1 == n ?2"\n":" ");
¥
Vprintf ("\n");

3
END:

if (a) NAG_FREE (a)
if (b) NAG_FREE (b);
if (ipiv) NAG_FREE (ipiv) ;

2

return exit_status;

[NP3660/8] f04bhc.7

f04bhc NAG C Library Manual

9.2 Program Data

nag_real_ sym_lin_solve (f04bhc) Example Program Data

4 2 :Values of N and NRHS
g’ :Value of UPLO
-1.81 2.06 0.63 -1.15
1.15 1.87 4.20
-0.21 3.87
2.07 :End of matrix A

0.96 3.93
6.07 19.25

8.38 9.90
9.50 27.85 :End of matrix B

9.3 Program Results

nag_real_sym lin_solve (f04bhc) Example Program Results

Solution

1 2
1 -5.0000 2.0000
2 -2.0000 3.0000
3 1.0000 4.0000
4 4.0000 1.0000

Estimate of condition number
7.6e+01

Estimate of error bound for computed solutions
8.4e-15

f04bhe.8 (last) [NP3660/8]

	f04bhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	uplo
	n
	nrhs
	a
	pda
	ipiv
	b
	pdb
	rcond
	errbnd
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR
	NE_RCOND
	NE_SINGULAR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

